Switch to Russian (Coming soon)

Previous Research
Current Research
Equipment/techniques
Cooperation
Publications
Grants and awards
Contact Information
Lab/group history
 

Click on magnifying glass for full size  

At present, the lab has 10 members:

•  Igor V. Koptyug / Head of laboratory

•  Anna A. Lysova, researcher, Ph.D.

•  Kirill V. Kovtunov, researcher, Ph.D.

•  Vladimir V. Zhivonitko researcher, Ph.D.

•  Ivan V. Skovpin, Ph.D. student

•  Danila A. Barskiy, Ph.D. student

•  Egor A. Dobretsov, B.Sc., student

•  Oleg G. Salnikov, student

•  Evgeny D. Petrovskiy, Ph.D. student

•  Maria S. Krestina, student

Previous research:

Since 1995, the main research activities of the group involved the development of novel applications of magnetic resonance imaging and microimaging (MRI, MRM) and of spatially resolved NMR spectroscopy (NMRS, MRS) as part of the research MRI toolkit for the studies in chemical engineering, catalysis and related fields. Over the past years, the research topics included:

•  studies of mass transport in porous materials (e.g., drying and water vapor sorption processes), including individual porous catalyst pellets, adsorbent layers, granular beds, monoliths, etc.;

•  comparison of direct experimental data with conventional models of mass transport in porous solids and determination of quantitative parameters of mass transport based on the mathematical modeling of experimental data;

•  studies of the flow and filtration of liquids, gases and granular solids in various channels and in porous media, including those of interest for chemical engineering and catalysis (e.g., porous materials, capillaries, channels, porous packed beds);

•  in situ studies of catalytic reactions and of the interplay of mass and heat transport with chemical transformations (catalytic hydrogenation of unsaturated hydrocarbons, catalytic decomposition of hydrogen peroxide, chemical wave propagation in the autocatalytic processes);

•  visualization of the macroscopic distribution of certain types of active components within the porous support (e.g., in supported catalysts);

•  multinuclear MR imaging of rigid solids for the studies of morphology of solid materials, spatially resolved MR thermometry of solid materials (e.g., of catalysts and catalyst beds under reactive conditions), and transport of granular solids;

•  demonstration of the parahydrogen-induced polarization (PHIP, PASADENA), in heterogeneous catalytic reactions.


The main achievements that we consider as significant:

•  Imaging and spectroscopy of an operating fixed bed catalytic reactor [24,29,34,35,38,40,41,48,50,52,70]

•  Imaging of the quadrupolar nuclei of rigid solids using the spin-echo pulse sequence in combination with liquids MRI hardware [31,47,57,59]

•  Spatially resolved 27Al NMR thermometry of a catalyst bed in the course of an exothermic reaction (with one or two spatial dimensions) [62,87]

•  Flow imaging of thermally polarized gases [5,14,21]

•  Imaging of distribution and transport of paramagnetic and diamagnetic solutes upon impregnation of catalyst support bodies with appropriate solutions [10,32,42,61,67,69]

•  Spatially resolved thermometry of propagating chemical waves [60,66]

•  Observation of PHIP in heterogeneous hydrogenations catalyzed by immobilized (heterogenized) metal complexes [56,58,63,96,101]

•  Observation of PHIP in heterogeneous hydrogenations catalyzed by supported metal catalysts [63,64,88,90,96]

•  PHIP of liquids and gases in heterogeneous hydrogenations [56,58,63,64,96]

•  PHIP-assisted imaging of an operating fixed bed model catalytic reactor [65,91]

•  PHIP for other types of catalysts/processes [92,100,104]

The research performed in 1995-2005 is briefly summarized in the 2-page Newsletter that can be downloaded here

Current research:

In recent years, the focus of our research has shifted significantly. As a result, the studies of mass transport in porous materials such as flow and filtration of liquids and gases in channels and granular beds, sorption of vapors and gases by porous solids, drying of wet porous materials, etc., are represented much less in our current research. Yet, some such studies continue, and in addition the tools developed and the experience accumulated in the past provide a solid basis for addressing new challenges. The main focus of our current research is on the NMR/MRI studies of the preparation and characterization of heterogeneous catalysts, the studies of the mechanisms of catalytic reactions and of the processes that take place in heterogeneous catalysts and model catalytic reactors under reactive conditions, the exploration of parahydrogen-based and other techniques for signal enhancement in NMR/MRI, and more Among the latest additions to this list are the biomedical applications of MRI and MRS.

The current research activities include:

1. MR (micro)imaging and spectroscopy of catalysts, catalytic reactions and reactors:

•  MR (micro)imaging and spatially resolved NMR spectroscopy of fluids in porous media, and in particular their applications to the studies of catalytic and other chemical processes (e.g., in situ studies of catalytic reactions in porous catalysts and model catalytic reactors)

•  MR (micro)imaging of the distribution and transport of active component precursors and other solutes upon preparation of supported catalysts (e.g., by impregnation/drying of porous supports)

2. Signal enhancement in NMR/MRI with parahydrogen-induced polarization of nuclear spins:

•  Development of efficient heterogeneous catalysts (e.g., immobilized metal complexes, supported metals, and other types) capable of providing the ultimate NMR signal enhancements

•  Extension of PHIP techniques to reactions other than hydrogenation of unsaturated hydrocarbons

•  Combining PHIP with the remarkable properties of long-lived spin states

•  Development of PHIP technologies for producing continuous streams of pure hyperpolarized liquids and gases for MRI applications, including biomedical MR imaging

•  Development of hypersensitive PHIP-based techniques for the studies of the mechanisms of heterogeneous catalytic processes and of the processes in operating catalytic reactors

•  Studies of the nuclear spin isomers of symmetric molecules

3. Biological MR imaging:

•  Development and application of novel strategies for high SNR/CNR multinuclear in vivo imaging and spectroscopy

•  Development and application of novel theranostic agents for NMR/MRI in vivo

•  In vitro MRI of eye lens changes related to age and cataract development

Experimental techniques and major equipment:

1) Magnetic resonance spectroscopy and microimaging

The NMR microimaging studies can yield information about the spatial distribution of liquids and gases within any cross-section of the sample under study non-destructively, with a spatial resolution of the order of hundreds or even tens of microns. Therefore, this technique can be employed to study in situ various dynamic processes in real time without interrupting the process under investigation. One of the advantages of MR imaging compared to other tomographic techniques is that it can spatially map not only the quantity of a substance, but also a broad range of other properties of the objects under study and processes within them. Besides, NMR is a spectroscopic technique, therefore combining NMR and MRM techniques one can get access to the spatially resolved information on chemical composition (e.g., separate spatial distributions of the reactant and the product in a functioning reactor).

The experiments are carried out with two Bruker NMR systems, an Avance III 400 MHz NMR microimaging instrument (magnetic field gradient up to 150 G/cm or 1.5 T/m) and an AV 300 SB NMR spectrometer.

2) Signal enhancement in NMR/MRI and parahydrogen-induced polarization

Many applications of NMR/MRI suffer from (or even made impossible by) a relatively low sensitivity of the technique, caused by a weak interaction of nuclear spins with the external magnetic fields and thus their poor orientation with respect to the static magnetic field. A family of the so-called hyperpolarization methods make it possible to force the nuclear spins to preferentially orient in the same direction to a much greater degree compared to the thermal equilibrium even in the very high magnetic fields of modern NMR/MRI instruments. Hyperpolarization of spins of the nuclei in diamagnetic molecules and materials is one of the hot topics in modern magnetic resonance. This is because it can provide NMR signal enhancements of about 4 orders of magnitude in the high magnetic fields of modern NMR/MRI magnets. In low magnetic fields, where sensitivity issues are particularly severe, hyperpolarization enhancements of NMR signals can in fact be significantly larger.

Parahydrogen-induced polarization (PHIP) is one of the members of the family of hyperpolarization techniques. It is based on the use of the nuclear spin isomers of molecular hydrogen H¬¬2 (either parahydrogen with the total nuclear spin of the two H atoms I=0, or sometimes orthohydrogen with I=1) in a catalytic hydrogenation reaction of an appropriate substrate. Upon the reaction, the symmetry of the H2 molecule is usually broken, and the initial correlation of the nuclear spins of para-H2 molecule is converted to a strong enhancement of the NMR signals of the reaction product. Polarization of the two H atoms originally coming from the H2 molecule can be transferred to other atoms (hydrogens or other nuclei with a non-zero nuclear spin such as 13C, 19F, etc.) in the product molecule, significantly broadening the scope of many potential applications of PHIP in NMR spectroscopy and imaging. Some examples include the hypersensitive studies of the mechanisms of homogeneous and heterogeneous catalytic reactions and of the in vivo studies of metabolism in lab animals.

A simple parahydrogen converter is available in the lab for production of the H2 mixtures enriched with parahydrogen (the ratio para-H2:ortho-H2 =1:1). In mid-2013, a parahydrogen generator from Bruker will be installed (BPHG 90, para-H2:ortho-H2>9:1). A setup was constructed to perform heterogeneous catalytic hydrogenation of unsaturated substrates either in the Earth’s magnetic field (ALTADENA experiment) or in the high magnetic field of the NMR spectrometer (PASADENA experiment).

3) In vivo MRI and MRS

The in vivo MRI studies of lab animals are conducted within the framework of the Intrer-Institute Research Sector for Imaging of Lab Animals founded jointly by the International Tomography Center, SB RAS and the Institute of Cytology and Genetics, SB RAS (head of the Sector – Dr. Sci., Prof. Igor V. Koptyug). The MRI studies are performed on the high-field "BioSpec 117/16" MRI system (Bruker) at 11.7 T magnetic field (500 MHz 1Í NMR frequency). The instrument is located at the SPF vivarium of the Institute of Cytology and Genetics, SB RAS where it was installed in 2009.

Our research is currently supported financially by the Russian Academy of Sciences (RAS), Siberian Branch of RAS (SB RAS), Russian Foundation for Basic Research (RFBR), and the Russian Ministry of Education and Science, including the Mega-grant (project no. 11.G34.31.0045 – http://chembionmr.ru/, project leader – Prof. Robert Kaptein).

International cooperation:

•  UNDER CONSTRUCTION


Publications:

2014

104. K.V. Kovtunov, D.A. Barskiy, O.G. Salnikov, A.K. Khudorozhkov, V.I. Bukhtiyarov, I.P. Prosvirin, I.V. Koptyug. Parahydrogen-induced polarization (PHIP) in heterogeneous hydrogenations over bulk metals and metal oxides, Chem. Commun., 50, 875-878 (2014)

http://dx.doi.org/10.1039/C3CC44939D

2013

103. V.V. Zhivonitko, V.-V. Telkki, J. Leppaniemi, G. Scotti, S. Fransilla, I.V. Koptyug. Remote detection NMR imaging of gas phase hydrogenation in microfluidic chips, Lab Chip, 13, 1554-1561 (2013)

http://dx.doi.org/10.1039/C3LC41309H

102. T.S. Godovikova, V. Lisitskiy, N.M. Antonova, T.V. Popova, O.D. Zakharova, A\.S. Chubarov, I.V. Koptyug, R.Z. Sagdeev, R. Kaptein, A.E. Akulov, V.I. Kaledin, V.P. Nikolin, S.I. Baiborodin, L.S. Koroleva, V.N. Silnikov. Ligand-directed acid-sensitive amidophosphate 5-trifluoromethyl-2'-deoxyuridine conjugate as a potential theranostic agent, Bioconjugate Chem., 24, 780-795 (2013)

http://dx.doi.org/10.1021/bc3006072

101. I.V. Skovpin, V.V. Zhivonitko, R. Kaptein, I.V. Koptyug. Generating parahydrogen-induced polarization using immobilized iridium complexes in the gas-phase hydrogenation of carbon-carbon double and triple bonds, Appl. Magn. Reson., 44, 289-300 (2013)

http://dx.doi.org/10.1007/s00723-012-0419-5

100. K.V. Kovtunov, V.V. Zhivonitko, I. Skovpin, D.A Barskiy, O.G. Salnikov, I.V. Koptyug. Toward continuous production of catalyst-free hyperpolarized fluids based on biphasic and heterogeneous hydrogenations with parahydrogen, J. Phys. Chem. C, 117, 22887-22893 (2013)

http://dx.doi.org/10.1021/jp407348r

99. I.V. Koptyug. Spin hyperpolarization in NMR to address enzymatic processes in vivo, Mendeleev Commun., 23, 299-312 (2013)

http://dx.doi.org/10.1016/j.mendcom.2013.11.001

98. N. Antonova, V. Lisitskiy, T. Popova, O. Zakharova, I. Koptyug, A. Akulov, V. Kaledin, T. Godovikova. A new trifluorothymidine prodrug for treating cancer, FEBS J., 280, 314-314 (2013)

http://dx.doi.org/10.1111/febs.12340

97. V.V. Zhivonitko, K.V. Kovtunov, P.L. Chapovsky, I.V. Koptyug. Nuclear spin isomers of ethylene: enrichment by chemical synthesis and application for NMR signal enhancement, Angew. Chem. Int. Ed., 52, 13251-13255 (2013)

http://dx.doi.org/10.1002/anie.201307389

96. K.V. Kovtunov, V.V. Zhivonitko, I.V. Skovpin, D.A. Barskiy, I.V. Koptyug. Parahydrogen-induced polarization in heterogeneous catalytic processes, Top. Curr. Chem., 338, 123-180 (2013)

http://dx.doi.org/10.1007/128_2012_371

95. O.G. Salnikov, K.V. Kovtunov, D.A. Barskiy, V.I. Bukhtiyarov, R. Kaptein, I.V. Koptyug. Kinetic study of propylene hydrogenation over Pt/Al2O3 by parahydrogen-induced polarization, Appl. Magn. Reson., 44, 279-288 (2013)

http://dx.doi.org/10.1007/s00723-012-0400-3

94. P.L. Chapovsky, V.V. Zhivonitko, I.V. Koptyug. Conversion of nuclear spin isomers of ethylene, J. Phys. Chem. A, 117, 9673-9683 (2013)

http://dx.doi.org/10.1021/jp312322f

93. E.A. Dobretsov, O.A. Snytnikova, I.V. Koptyug, R. Kaptein, Y.P. Tsentalovich. Magnetic resonance imaging (MRI) study of the water content and transport in rat lenses, Exp. Eye Res., 113, 162-171 (2013)

http://dx.doi.org/10.1016/j.exer.2013.06.008

92. V.V. Zhivonitko, V.-V. Telkki, K. Chernichenko, T.J. Repo, M. Leskela, V. Sumerin, I.V. Koptyug. Tweezers for parahydrogen: a metal-free probe of non-equilibrium nuclear spin states of H2 molecules, J. Amer. Chem. Soc., 136, 598-601 (2013)

http://dx.doi.org/10.1021/ja410396g

2012

91. V.V. Zhivonitko, V.-V. Telkki, I.V. Koptyug. Characterization of microfluidic gas reactors using remote-detection MRI and parahydrogen-induced polarization, Angew. Chem. Int. Ed., 51, 8054-8058 (2012)

http://dx.doi.org/10.1002/anie.201202967

90. K.V. Kovtunov, I.E. Beck, V.V. Zhivonitko, D.A. Barskiy, V.I. Bukhtiyarov, I.V. Koptyug. Heterogeneous addition of H2 to double and triple bonds over supported Pd catalysts: a parahydrogen-induced polarization technique study, Phys. Chem. Chem. Phys., 14, 11008-11014 (2012)

http://dx.doi.org/10.1039/c2cp40690j

89. I.V. Koptyug. MRI of mass transport in porous media: drying and sorption processes, Progr. NMR Spectr., 65, 1-65 (2012)

http://dx.doi.org/10.1016/j.pnmrs.2011.12.001

88. D.A. Barskiy, K.V. Kovtunov, A. Primo, A. Corma, R. Kaptein, I.V. Koptyug. Selective hydrogenation of 1,3-butadiene and 1-butyne over a Rh/chitosan catalyst investigated by using parahydrogen-induced polarization, ChemCatChem, 4, 2031-2035 (2012)

http://dx.doi.org/10.1002/cctc.201200414

87. M.P. Moshkin, A.E. Akulov, D.V. Petrovsky, O.V. Saik, E.D. Petrovsky,A.A. Savelov, I.V. Koptyug. Russ. Physiol. J. 98, 1264-1273 (2012) (in Russian)

86. A.A. Lysova, A.V. Kulikov, V.N. Parmon, R.Z. Sagdeev, I.V. Koptyug. Quantitative temperature mapping within an operating catalyst by spatially resolved 27Al NMR , Chem. Commun., 48, 5763-5765 (2012)

http://dx.doi.org/10.1039/C2CC31260C

2011

85. A.S. Chubarov, M.M. Shakirov, I.V. Koptyug, R.Z. Sagdeev, D.G. Knorre, T.S. Godovikova. Synthesis and characterization of fluorinated homocysteine derivatives as potential molecular probes for 19F magnetic resonance spectroscopy and imaging, Bioorg. Med. Chem. Lett., 21, 4050-4053 (2011)

http://dx.doi.org/10.1016/j.bmcl.2011.04.119

84. V.V. Zhivonitko, K.V. Kovtunov, I.E. Beck, A.B. Ayupov, V.I. Bukhtiyarov, I.V. Koptyug. Role of different active sites in heterogeneous alkene hydrogenation on platinum catalysts revealed by means of parahydrogen-induced polarization, J. Phys. Chem. C, 115, 13386-13391 (2011)

http://dx.doi.org/10.1021/jp203398j

83. N.G. Kolosova, A.E. Akulov, N.A. Stefanova, M.P. Moshkin, A.A. Savelov, I.V. Koptyug, A.V. Panov, V.A. Vavilin. Effect of malate on the development of rotenone_Induced brain changes in Wistar and OXYS rats: an MRI study, Doklady Biol. Sci., 437, 72-75 (2011)

http://dx.doi.org/10.1134/S0012496611020049

82. P.I. Kalmykov, V.E. Zarko, A.A. Sidelnikov, I.V. Koptyug, A.I. Ancharov, K.A. Sidorov. Specifi c features of the crystal and phase structure of binary systems 5,6-(3',4'-furazano)-1,2,3,4-tetrazine-1,3- dioxide-2,4-dinitro-2,4-diazapentane, Russ. J. Appl. Chem., 84, 248-255 (2011)

http://dx.doi.org/10.1134/S1070427211020145

81. I.V. Koptyug. "Catalysts and catalytic processes studied by MRI", in: Encyclopedia of Magnetic Resonance, 2011, John Wiley & Sons

http://dx.doi.org/10.1002/9780470034590.emrstm1266

80. I.V. Skovpin, V.V. Zhivonitko, I.V. Koptyug. Parahydrogen-induced polarization in heterogeneous hydrogenations over silica-immobilized Rh complexes, Appl. Magn. Reson., 41, 393-410 (2011)

http://dx.doi.org/10.1007/s00723-011-0255-z

79. A.A. Lysova, A. von Garnier, E.H. Hardy, R. Reimert, I.V. Koptyug. The influence of an exothermic reaction on the spatial distribution of the liquid phase in a trickle bed reactor: direct evidence provided by NMR imaging, Chem. Engng J., 173, 552-563 (2011)

http://dx.doi.org/10.1016/j.cej.2011.07.074

2010

78. V.-V. Telkki, V.V. Zhivonitko, S. Ahola, K.V. Kovtunov, J. Jokisaari, I.V. Koptyug. Microfluidic gas-flow imaging utilizing parahydrogen-induced polarization and remote-detection NMR, Angew. Chem. Int. Ed., 49, 8363-8366 (2010)

http://dx.doi.org/10.1002/anie.201002685

77. K.V. Kovtunov, V.V. Zhivonitko, A. Corma, I.V. Koptyug. Parahydrogen-induced polarization in heterogeneous hydrogenations catalyzed by an immobilized Au(III) complex, J. Phys. Chem. Lett., 1, 1705-1708 (2010)

http://dx.doi.org/10.1021/jz100391j

76. A.A. Lysova, I.V. Koptyug. Magnetic resonance imaging methods for in situ studies in heterogeneous catalysis, Chem. Soc. Rev., 39, 4585-4601 (2010)

http://dx.doi.org/10.1039/B919540H

75. I.S. Glaznev, I.V. Koptyug, Yu.I. Aristov. A compact layer of alumina modified by CaCl2: the influence of composition and porous structure on water transport, Microporous Mesoporous Mater., 131, 358-365 (2010)

http://dx.doi.org/10.1016/j.micromeso.2010.01.014

74. I.V. Koptyug, V.V. Zhivonitko, K.V. Kovtunov. New perspectives for parahydrogen-induced polarization in liquid phase heterogeneous hydrogenation: an aqueous phase and ALTADENA study, ChemPhysChem, 11, 3086-3088 (2010)

http://dx.doi.org/10.1002/cphc.201000407

73. K.V. Kovtunov, V.V. Zhivonitko, L. Kiwi-Minsker, I.V. Koptyug. Parahydrogen-induced polarization in alkyne hydrogenation catalyzed by Pd nanoparticles embedded in a supported ionic liquid phase, Chem. Commun., 46, 5764-5766 (2010)

http://dx.doi.org/10.1039/C0CC01411G

72. I.I. Koptyug, A.A. Lysova, G.A. Kovalenko, L.V. Perminova, I.V. Koptyug. Application of NMR spectroscopy and imaging in heterogeneous biocatalysis, Appl. Magn. Reson., 37, 483-495 (2010)

http://dx.doi.org/10.1007/s00723-009-0074-7

71. A.A. Lysova, J.A. Bergwerff, L. Espinosa-Alonso, B.M. Weckhuysen, I.V. Koptyug. Magnetic resonance imaging as an emerging tool for studying the preparation of supported catalysts, Appl. Catal. A: General, 374, 126-136 (2010)

http://dx.doi.org/10.1016/j.apcata.2009.11.038

2009

70. A.A. Lysova, I.V. Koptyug, A.V. Kulikov, V.A. Kirillov, R.Z. Sagdeev. An NMR imaging study of steady-state and periodic operation modes of a trickle bed reactor, Topics in Catalysis, 52, 1371-1380 (2009)

http://dx.doi.org/10.1007/s11244-009-9316-z

69. L. Espinosa-Alonso, A.A. Lysova, P. Peinder, K.P. de Jong, I.V. Koptyug, B.M. Weckhuysen. Magnetic resonance imaging studies on catalyst impregnation processes: discriminating metal ion complexes within millimeter-sized gamma-Al2O3 catalyst bodies, J. Amer. Chem. Soc., 131, 6525-6534 (2009)

http://dx.doi.org/10.1021/ja900346k

68. N.N. Lukzen, M.V. Petrova, I.V. Koptyug, A.A. Savelov, R.Z. Sagdeev. The generating functions formalism for the analysis of spin response to the periodic trains of RF pulses. Echo sequences with arbitrary refocusing angles and resonance offsets, J. Magn. Reson., 196, 164-169 (2009)

http://dx.doi.org/10.1016/j.jmr.2008.11.008

2008

67. J.A. Bergwerff, A.A. Lysova, L. Espinosa-Alonso, I.V. Koptyug, B.M. Weckhuysen. Monitoring transport phenomena of paramagnetic metal-ion complexes inside catalyst bodies with magnetic resonance imaging, Chem. Eur. J., 14, 2363-2374 (2008)

http://dx.doi.org/10.1002/chem.200700990

66. I.V. Koptyug, V.V. Zhivonitko, R.Z. Sagdeev. Advection of chemical reaction fronts in a porous medium, J. Phys. Chem. B, 112, 1170-1176 (2008)

http://dx.doi.org/10.1021/jp077612r

65. L.-S. Bouchard, S.R. Burt, M.S. Anwar, K.V. Kovtunov, I.V. Koptyug, A. Pines. NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen, Science, 319, 442-445 (2008)

http://dx.doi.org/10.1126/science.1151787

64. K.V. Kovtunov, I.E. Beck, V.I. Bukhtiyarov, I.V. Koptyug. Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts, Angew. Chem. Int. Ed., 47, 1492-1495 (2008)

http://dx.doi.org/10.1002/anie.200704881

63. K.V. Kovtunov, I.V. Koptyug. "Parahydrogen-induced polarization in heterogeneous catalytic hydrogenations", in: Magnetic Resonance Microscopy: Spatially Resolved NMR Techniques and Applications, S. Codd, J.D. Seymour, eds. 2008, Wiley-VCH:Weinheim, 101-115

http://dx.doi.org/10.1002/9783527626052.ch7

62. I.V. Koptyug, A.V. Khomichev, A.A. Lysova, R.Z. Sagdeev. Spatially resolved NMR thermometry of an operating fixed-bed catalytic reactor, J. Amer. Chem. Soc., 130, 10452-10453 (2008)

http://dx.doi.org/10.1021/ja802075m

2007

61. J.A. Bergwerff, A.A. Lysova, L. Espinosa Alonso, I.V. Koptyug, B.M. Weckhuysen. Probing the transport of paramagnetic complexes inside catalyst bodies in a quantitative manner by magnetic resonance imaging, Angew. Chem. Int. Ed., 46, 7224-7227 (2007)

http://dx.doi.org/10.1002/anie.200701399

60. V.V. Zhivonitko, I.V. Koptyug, R.Z. Sagdeev. Temperature changes visualization during chemical wave propagation, J. Phys. Chem. A, 111, 4122-4124 (2007)

http://dx.doi.org/10.1021/jp071435c

59. I.V. Koptyug, A.A. Lysova, A.V. Khomichev. Direct multinuclear imaging of porous and composite solid materials, Magn. Reson. Imaging, 25, 545-546 (2007)

http://dx.doi.org/10.1016/j.mri.2007.01.016

58. L.-S. Bouchard, K.V. Kovtunov, S.R. Burt, M.S. Anwar, I.V. Koptyug, R.Z. Sagdeev, A. Pines. Parahydrogen-enhanced hyperpolarized gas-phase magnetic resonance imaging, Angew. Chem. Int. Ed., 46, 4064-4068 (2007)

http://dx.doi.org/10.1002/anie.200700830

57. I.V. Koptyug, A.A. Lysova, A.V. Khomichev, R.Z. Sagdeev. 27Al NMR/MRI studies of the transport of granular Al2O3, Diff. Fundam., 5, 2-1-2-7 (2007)

http://www.uni-leipzig.de/diffusion/contents_vol5.html

56. I.V. Koptyug, K.V. Kovtunov, S.R. Burt, M.S. Anwar, C. Hilty, S. Han, A. Pines, R.Z. Sagdeev. para-Hydrogen-induced polarization in heterogeneous hydrogenation reactions, J. Amer. Chem. Soc., 129, 5580-5586 (2007)

http://dx.doi.org/10.1021/ja068653o

55. I.V. Koptyug. The frontiers of nonmedical MRI, Appl. Magn. Reson., 32, 1-2 (2007)

http://dx.doi.org/10.1007/s00723-007-0015-2

54. I.V. Koptyug, A.A. Lysova, V.N. Parmon, R.Z. Sagdeev. Multinuclear magnetic resonance imaging in catalytic research: recent advances and future prospects, Kinet. Catal., 48, 464-468 (2007)

http://dx.doi.org/10.1134/S0023158407040027

53. I.V. Koptyug, A.V. Khomichev, A.A. Lysova, R.Z. Sagdeev. Multinuclear MRI of solids: from structure to transport, Appl. Magn. Reson., 32, 321-331 (2007)

http://dx.doi.org/10.1007/s00723-007-0017-0

52. I.V. Koptyug, A.A. Lysova, R.Z. Sagdeev, V.N. Parmon. Application of multinuclear MRI and solid state MRI in heterogeneous catalysis, Catal. Today, 126, 37-43 (2007)

http://dx.doi.org/10.1016/j.cattod.2006.10.001

51. I.V. Koptyug, A.A. Lysova, K.V. Kovtunov, V.V. Zhivonitko, A.V. Khomichev, R.Z. Sagdeev. Multinuclear magnetic resonance imaging as a multifunctional tool for the investigation of the properties of materials, transport processes and catalytic reactions, Russ. Chem. Rev., 76, 583-598 (2007)

http://dx.doi.org/10.1070/RC2007v076n06ABEH003708

50. A.A. Lysova, I.V. Koptyug, A.V. Kulikov, V.A. Kirillov, R.Z. Sagdeev, V.N. Parmon. Nuclear magnetic resonance imaging of an operating gas-liquid-solid catalytic fixed bed reactor, Chem. Engng J., 130, 101-109 (2007)

http://dx.doi.org/10.1016/j.cej.2006.06.014

49. I.V. Koptyug, K.V. Kovtunov, E. Gerkema, L. Kiwi-Minsker, R.Z. Sagdeev. NMR microimaging of fluid flow in model string-type reactors, Chem. Engng Sci., 62, 4459-4468 (2007)

http://dx.doi.org/10.1016/j.ces.2007.04.045

2006

48. I.V. Koptyug, A.A. Lysova. "In situ monitoring of multiphase catalytic reactions at elevated temperatures by MRI and NMR", in: NMR imaging in chemical engineering, S. Stapf, S.-I Han, eds. 2006, Wiley-VCH:Weinheim, 570-589

http://dx.doi.org/10.1002/3527607560.ch5d

47. I.V. Koptyug, A.A. Lysova. Multinuclear NMR imaging of rigid solids with an Avance DRX-300, Bruker Spin Report, 157-158, 22-25 (2006)

http://www.bruker-biospin.biz/spinreport157.html?&L=11&print=http%3A%2F%252

46. J.A. Bergwerff, L.G.A. van der Water, A.A. Lysova, I.V. Koptyug, T. Visser, K.P. de Jong, B.M. Weckhuysen. Monitoring the preparation of (Co)Mo/Al2O3 extrudates using spatially resolved spectroscopic techniques, Stud. Surf. Sci. Catal., 162, 175-186 (2006)

http://dx.doi.org/10.1016/S0167-2991(06)80905-5

45. Yu.I. Aristov, I.V. Koptyug, L.G. Gordeeva, L. Yu. Ilyina, I.S. Glaznev. Dynamics of water vapor sorption in a CaCl2/silica gel/binder bed: the effect of the bed pore structure, Kinet. Catal., 47, 776-781 (2006)

http://dx.doi.org/10.1134/S0023158406050181

44. Yu.I. Aristov, I.S. Glaznev, L.G. Gordeeva, I.V. Koptyug, L.Yu. Ilyina, J. Karger, C. Krause, B. Dawoud. "Dynamics of water sorption on composites "CaCl2 in silica": single grain, granular bed, consolidated layer", in: Fluid transport in nanoporous materials, W.C. Conner, J. Fraissard, eds. 2006, Springer:Dordrecht, 553-565

http://dx.doi.org/10.1007/1-4020-4382-1_25

43. I.V. Koptyug, A.A. Lysova, A.V. Matveev, L.Yu. Ilyina, R.Z. Sagdeev, V.N. Parmon. "NMR imaging as a tool for studying mass transport in porous materials", in: Fluid transport in nanoporous materials, W.C. Conner, J. Fraissard, eds. 2006, Springer:Dordrecht, 353-374

http://dx.doi.org/10.1007/1-4020-4382-1_17

42. A.V. Matveev, L.V. Barysheva, I.V. Koptyug, V.M. Khanaev, A.S. Noskov. Investigation of fine granular material flow through a packed bed, Chem. Engng Sci., 61, 2394-2405 (2006)

http://dx.doi.org/10.1016/j.ces.2005.07.041

2005

41. V.A. Kirillov, I.V. Koptyug. Critical phenomena in trickle-bed reactors, Ind. Eng. Chem. Res., 44, 9727-9738 (2005)

http://dx.doi.org/10.1021/ie050276l

40. I.V. Koptyug, A.A. Lysova, A.V. Kulikov, V.A. Kirillov, V.N. Parmon, R.Z. Sagdeev. Functional MRI and NMR spectroscopy of an operating gas-liquid-solid catalytic reactor, Magn. Reson. Imaging, 23, 221-225 (2005)

http://dx.doi.org/10.1016/j.mri.2004.11.022

39. I.V. Koptyug, A.A. Lysova, R.Z. Sagdeev, V.A. Kirillov, A.V. Kulikov, V.N. Parmon. In situ MRI of the structure and function of multiphase catalytic reactors, Catal. Today, 105, 464-468 (2005)

http://dx.doi.org/10.1016/j.cattod.2005.06.026

38. A.A.. Lysova, I.V. Koptyug, A.V. Kulikov, V.A. Kirillov, R.Z. Sagdeev, V.N. Parmon. "Application of NMR microimaging for the investigation of the heterogeneous catalytic reactions inside catalyst pellets and fixed catalyst bed", in: Sustainable strategies for the upgrading of natural gas: fundamentals, challenges and opportunities, E.G. Derouane, V. Parmon, F. Lemos, F.R. Ribeiro, eds. 2005, Springer, 395-400

http://www.springer.com/west/home/generic/search/results?SGWID=4-40109-22-38093158-0

37. I.V. Koptyug, A.A. Lysova, A.V. Matveev, V.N. Parmon, R.Z. Sagdeev. NMR imaging of mass transport processes and catalytic reactions, Topics in Catalysis, 32, 83-91 (2005)

http://dx.doi.org/10.1007/s11244-005-9256-1

36. Z.R. Ismagilov, S.A. Yashnik, A.V. Matveev, I.V. Koptyug, J.A. Moulijn. Characteristics of drying and active component distribution in alumina monoliths using 1H-NMR imaging, Catal. Today, 105, 484-491 (2005)

http://dx.doi.org/10.1016/j.cattod.2005.06.054

35. S.A. Yashnik, Z.R. Ismagilov, I.V. Koptyug, I.P. Andrievskaya, A.V. Matveev, J.A. Moulijn. Formation of textural and mechanical properties of extruded ceramic honeycomb monoliths: an 1H NMR imaging study, Catal. Today, 105, 507-515 (2005)

http://dx.doi.org/10.1016/j.cattod.2005.06.055

34. V.A. Kirillov, I.V. Koptyug, A.V. Kulikov, N.A. Kuzin, A.A. Lysova, A.B. Shigarov, V.N. Parmon. Self-oscillations on a partially wetted catalyst pellet in alpha-methylstyrene hydrogenation: experiment and mathematical modeling, Theor. Found. Chem. Engng, 39, 24-35 (2005)

http://dx.doi.org/10.1007/s11236-005-0024-5

33. O.V. Chub, E.S. Borisova, O.P. Klenov, A.S. Noskov, A.V. Matveev, I.V. Koptyug. Research of mass-transfer in fibrous sorption-active materials, Catal. Today, 105, 680-688 (2005)

http://dx.doi.org/10.1016/j.cattod.2005.06.049

32. A.A. Lysova, I.V. Koptyug, R.Z. Sagdeev, V.N. Parmon, J.A. Bergwerff, B.M. Weckhuysen. Noninvasive in situ visualization of supported catalyst preparations using multinuclear magnetic resonance imaging, J. Amer. Chem. Soc., 127, 11916-11917 (2005)

http://dx.doi.org/10.1021/ja053456v

31. I.V. Koptyug, D.R. Sagdeev, E. Gerkema, H. Van As, R.Z. Sagdeev. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques, J. Magn. Reson., 175, 21-29 (2005)

http://dx.doi.org/10.1016/j.jmr.2005.03.005

2004

30. I.V. Koptyug, A.A. Lysova, A.V. Matveev, R.Z. Sagdeev, V.N. Parmon. Katal. Prom., special issue, 60-67 (2004) (in Russian)

29. I.V. Koptyug, A.A. Lysova, A.V. Kulikov, V.A. Kirillov, V.N. Parmon, R.Z. Sagdeev. Functional imaging and NMR spectroscopy of an operating gas-liquid-solid catalytic reactor, Appl. Catal. A: General, 267, 143-148 (2004)

http://dx.doi.org/10.1016/j.apcata.2004.02.040

2003

28. I.V. Koptyug, A.V. Kulikov, A.A. Lysova, V.A. Kirillov, V.N. Parmon, R.Z. Sagdeev. Investigation of heterogeneous catalytic reactions by the in situ 1H NMR microimaging, Chem. Sust. Dev., 11, 109-116 (2003)

http://www.sibran.ru/psb/list.phtml?eng+9+2003+1

27. I.V. Koptyug, A.A. Lysova, A.V. Matveev, L.Yu. Ilyina, R.Z. Sagdeev, V.N. Parmon. The NMR microimaging studies of the interplay of mass transport and chemical reaction in porous media, Magn. Reson. Imaging, 21, 337-343 (2003)

http://dx.doi.org/10.1016/S0730-725X(03)00165-6

26. I.V. Koptyug, A.A. Lysova, V.N. Parmon, R.Z. Sagdeev. In situ 1H NMR imaging study of propagation of concentration waves in an autocatalytic reaction in a fixed granular bed, Kinet. Catal., 44, 401-407 (2003)

http://dx.doi.org/10.1023/A:1024451103734

25. I.V. Koptyug, R.Z. Sagdeev. Non-traditional applications of NMR tomography, Russ. Chem. Rev., 72, 165-191 (2003)

http://dx.doi.org/10.1070/RC2003v072n02ABEH000744

2002

24. I.V. Koptyug, A.V. Kulikov, A.A. Lysova, V.A. Kirillov, V.N. Parmon, R.Z. Sagdeev. NMR imaging of the distribution of the liquid phase in a catalyst pellet during alpha-methylstyrene evaporation accompanied by its vapor-phase hydrogenation, J. Amer. Chem. Soc., 124, 9684-9685 (2002)

http://dx.doi.org/10.1021/ja026713u

23. I.V. Koptyug, L.Y. Ilyina, A.V. Matveev, R.Z. Sagdeev, V.N. Parmon. "Characterization of mass transport and related phenomena in porous catalysts and sorbents by NMR imaging and displacement NMR spectroscopy", in: Magnetic resonance in colloid and interface science, J. Fraissard, O. Lapina, eds. 2002, Kluwer Academic Publishers:Dordrecht, 197-208

http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-0786-6

22. I.V. Koptyug, R.Z. Sagdeev. Modern applications of NMR tomography in physical chemistry. The characteristic features of the technique and its applications to studies of liquid-containing objects, Russ. Chem. Rev., 71, 593-617 (2002)

http://dx.doi.org/10.1070/RC2002v071n07ABEH000725

21. I.V. Koptyug, A.V. Matveev, S.A. Altobelli. NMR studies of hydrocarbon gas flow and dispersion, Appl. Magn. Reson., 22, 187-200 (2002)

http://dx.doi.org/10.1007/BF03166102

20. I.V. Koptyug, L.Yu. Ilyina, A.V. Matveev, V.N. Parmon, R.Z. Sagdeev. Khim. Fizika, 21, 68-78 (2002) (in Russian)

19. I.V. Koptyug, A.V. Kulikov, A.A. Lysova, V.A. Kirillov, R.Z. Sagdeev, V.N. Parmon. Application of 1H NMR imaging to studies of liquid phase distribution in a catalyst pellet upon the reaction of catalytic hydrogenation of alfa-methylstyrene, Doklady Phys. Chem., 385, 158-163 (2002)

http://dx.doi.org/10.1023/A:1016543403062

18. I.V. Koptyug, R.Z. Sagdeev. Applications of NMR tomography to mass transfer studies, Russ. Chem. Rev., 71, 789-835 (2002)

http://dx.doi.org/10.1070/RC2002v071n10ABEH000743

2001

17. V.N. Glaznev, I.V. Koptyug, Yu.G. Korobeinikov, N.N. Medvedev, V.N. Parmon, A.D. Simonov, V.B. Fenelonov, V.M. Fomin, L.YU. Khitrina, N.A. Yazykov. Modern approaches to the studies and description of drying of porous materials. SB RAS Publishing House, Novosibirsk, 2001 (in Russian)

16. N.A. Chumakova, N.V. Vernikovskaya, M.M. Tokarev, I.V. Koptyug, L.Yu. Ilyina, Yu.A. Aristov. Water vapor sorption-desorption in fixed bed of composite sorbent: the refinement of transfer parameters and sorption kinetics, Chem. Ing. Tech., 73, 776-776 (2001)

http://dx.doi.org/10.1002/1522-2640(200106)73:6<776::AID-CITE7764444>3.0.CO;2-H

15. N.V. Lebedeva, E.G. Bagryanskaya, V.R. Gorelik, I.V. Koptyug, R.Z. Sagdeev. Temperature and salt addition effect on the micellized radical pairs recombination studied by stimulated nuclear polarization, J. Phys. Chem. A, 105, 4640-4647 (2001)

http://dx.doi.org/10.1021/jp004481k

14. I.V. Koptyug, L.Yu. Ilyina, A.V. Matveev, R.Z. Sagdeev, V.N. Parmon, S.A. Altobelli. Liquid and gas flow and related phenomena in monolithic catalysts studied by 1H NMR microimaging, Catal. Today, 69, 385-392 (2001)

http://dx.doi.org/10.1016/S0920-5861(01)00396-0

13. I.V. Koptyug, L.Yu. Khitrina, V.N. Parmon, R.Z. Sagdeev. NMR imaging of mass transport and related phenomena in porous catalysts and sorbents, Magn. Reson. Imaging, 19, 531-534 (2001)

http://dx.doi.org/10.1016/S0730-725X(01)00286-7

12. I.V. Koptyug, L.Yu. Ilyina, V.B. Fenelonov, A.Yu. Derevyankin, R.Z. Sagdeev, V.N. Parmon. Application of the 1H-NMR microimaging technique to in situ studies of evaporation of liquids from objects modeling porous solids, Doklady Phys. Chem., 376, 44-48 (2001)

http://dx.doi.org/10.1023/A:1018803116270

2000

11. I.V. Koptyug, L.Yu. Khitrina, Yu.I. Aristov, M.M. Tokarev, K.T. Iskakov, V.N. Parmon, R.Z. Sagdeev. An 1H NMR microimaging study of water vapor sorption by individual porous pellets, J. Phys. Chem. B, 104, 1695-1700 (2000)

http://dx.doi.org/10.1021/jp9922763

10. L.Yu. Khitrina, I.V. Koptyug, N.A. Pakhomov, R.Z. Sagdeev, V.N. Parmon. An 1H NMR microimaging visualization of hexachloroplatinate dianion redistribution within a porous gamma-Al2O3 pellet in the course of supported catalyst preparation, J. Phys. Chem. B, 104, 1966-1970 (2000)

http://dx.doi.org/10.1021/jp994412+

9. I.V. Koptyug, S.I. Kabanikhin, K.T. Iskakov, V.B. Fenelonov, L.Yu. Khitrina, R.Z. Sagdeev, V.N. Parmon. A quantitative NMR imaging study of mass transport in porous solids during drying, Chem. Engng Sci., 55, 1559-1571 (2000)

http://dx.doi.org/10.1016/S0009-2509(99)00404-2

8. I.V. Koptyug, A.G. Goloshevsky, I.S. Zavarine, N.J. Turro, P.J. Krusic. CIDEP studies of fullerene-derived radical adducts, J. Phys. Chem. A, 104, 5726-5731 (2000)

http://dx.doi.org/10.1021/jp994005y

7. S.I. Kabanikhin, I.V. Koptyug, K.T. Iskakov, R.Z. Sagdeev. Inverse problem for the diffusional transport of water upon single pellet moisture sorption, Int. J. Nonlinear Sci. Num. Simul., 1, 31-41 (2000)

http://dx.doi.org/10.1515/IJNSNS.2000.1.1.31

6. I.V. Koptyug, R.Z. Sagdeev, L.Yu. Khitrina, V.N. Parmon. A nuclear magnetic resonance microscopy study of mass transport in porous materials, Appl. Magn. Reson., 18, 13-28 (2000)

http://dx.doi.org/10.1007/BF03162095

5. I.V. Koptyug, S.A. Altobelli, E. Fukushima, A.V. Matveev, R.Z. Sagdeev. Thermally polarized 1H NMR microimaging studies of liquid and gas flow in monolithic catalysts, J. Magn. Reson., 147, 36-42 (2000)

http://dx.doi.org/10.1006/jmre.2000.2186

1999

4. V.N. Glaznev, I.V. Koptyug, Yu.G. Korobeinikov. Physical features of acoustic drying of wood, J. Engng Phys. Thermophys., 72, 409-411 (1999)

http://dx.doi.org/10.1007/BF02699203

3. N.V. Lebedeva, E.G. Bagryanskaya, I.V. Koptyug, R.Z. Sagdeev, M.D.E. Forbes. Theoretical and experimental stimulated nuclear polarization investigation of consecutive biradicals, Chem. Phys. Lett., 308, 295-302 (1999)

http://dx.doi.org/10.1016/S0009-2614(99)00605-3

1998

2. I.V. Koptyug, V.B. Fenelonov, L. Yu. Khitrina, R.Z. Sagdeev, V.N. Parmon. In situ NMR imaging studies of the drying kinetics of porous catalyst support pellets, J. Phys. Chem. B, 102, 3090-3098 (1998)

http://dx.doi.org/10.1021/jp9730914

1. S.I. Kabanikhin, I.V. Koptyug, K.T. Iskakov, R.Z. Sagdeev. Inverse problem for a quasi-linear equation of diffusion, J. Inv. Ill-Posed Problems, 6, 335-351 (1998)

http://dx.doi.org/10.1515/jiip.1998.6.4.335


Contact information:

Laboratory of Magnetic Resonance Microimaging

International Tomography Center SB RAS
Institutskaya 3A
Novosibirsk 630090
Russia

tel. : +7(383)333-35-61
fax : +7(383)333-13-99
e-mail: koptyug@tomo.nsc.ru

Lab history:

The MRM group was born in 1995 as part of the Laboratory of Magnetic and Spin Phenomena (head – Prof. Renad Z. Sagdeev) at the International Tomography Center (ITC SB RAS) in Novosibirsk, Russia. At that time, the MRM group included just two members, but was growing steadily ever since and in 2011 has become an independent laboratory

Former group/laboratory members:
1) Ludmila Yu. Ilyina (Khitrina)
2) Anatoly V. Matveev
3) Julia S. Olshevskaya
4) Artem G. Goloshevsky
5) Alexey V. Khomichev
6) Irina I. Koptyug
TOP
home / about us / structure / resources / contact us
All contents © copyright 2004-2005 International Tomography Center. All rights reserved
 

View in full size